If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3u^2-3u=0
a = 3; b = -3; c = 0;
Δ = b2-4ac
Δ = -32-4·3·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-3}{2*3}=\frac{0}{6} =0 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+3}{2*3}=\frac{6}{6} =1 $
| -5y-(8y)=12 | | 3x+5=(-2)-4x | | -3(-6v+6)-8v=2(v-1)-4 | | 6x+3=8-7 | | 3x+3(3x-3)=17 | | 2x+3(3x-3)=17 | | 200x-20=90 | | w-15=5.7 | | 2(2x-30)=-72 | | 5(v+2)=2v-17 | | 2x+9=8x-31 | | 8x-6=-6-3x-x | | -1=7x-4 | | x^2+15x+64=20 | | x-2/6=0.5 | | 3/4-13d/16=7/8 | | -51=-7x+5 | | -2(1-5x)=3x+26 | | 2x^2-6x-40=0 | | 7x+30=19x^2 | | 7z+3=-2z=-12 | | x+(-22)=35 | | h/5=21 | | 5(-5+q)=5-q | | 2(x+6)=100 | | 41/105=x/630 | | |2x+10|=14 | | -2/3w-1/2=2/7 | | -3x-4=2x-2 | | -5x^2=-20x | | 3/8x-5=13 | | v=155 |